

111-2學期 SK計劃課程 授課教師教學內容

課程時間目前安排於:3-B、3-CD、5-B、5-78

*各教師課程內容規畫可能會另調整安排

• 開課課程:個案研究、問題解決

一門課選擇兩位教師

教師授課時間

課程名稱:個案研究、問題解決

時間安排:3-B、3-CD、5-B、5-78

注意:

● 為學習多元,請舊生選填課程名稱及教師時,須和之前學期不同喔

● 請同學選擇教師時盡量避開時間有重疊的教師

n± 88	3-B	3-C		3-D		n± 88	5-B	5-7		5-8			
時間	12:10-13:00	17:05	~17:55	18:00~18:50	一 時間		12:10-13:00	15:10~16:00		16:10~17:00		備註	
教室安排	莊敬108	莊敬102	莊敬108	莊敬108		教室安排	莊敬102	莊敬102	莊敬210	莊敬307	莊敬102	莊敬210	
2月15日	徐昕煒	許志華	戴淑賢	戴淑賢		2月17日		余燕薇	趙怡翔	王珮嘉	余燕薇	趙怡翔	
2月22日	徐昕煒	許志華	饒忻	饒忻		2月24日			黃冠鈞	王珮嘉		黃冠鈞	
3月1日	徐昕煒	許志華	戴淑賢	戴淑賢		3月3日		余燕薇	趙怡翔	王珮嘉	余燕薇	趙怡翔	
3月8日		許志華	饒忻	饒忻		3月10日			黃冠鈞	王珮嘉		黃冠鈞	
3月15日	徐昕煒	許志華	戴淑賢	戴淑賢		3月17日		余燕薇	趙怡翔	王珮嘉	余燕薇	趙怡翔	
3月22日		運動會	會,正常上班(停課)		3月24日			黃冠鈞	王珮嘉		黃冠鈞	
3月29日	徐昕煒	許志華	饒忻	饒忻		3月31日		余燕薇	趙怡翔	王珮嘉	余燕薇	趙怡翔	
4月5日		民	族掃墓節(放作	閔)		4月7日			黃冠鈞	王珮嘉		黃冠鈞	
4月12日	徐昕煒				期中考週	4月14日			趙怡翔			趙怡翔	期中考週
4月19日	徐昕煒		戴淑賢	戴淑賢		4月21日		余燕薇	黃冠鈞	王珮嘉	余燕薇	黃冠鈞	
4月26日	徐昕煒	許志華	饒忻	饒忻		4月28日			趙怡翔	王珮嘉		趙怡翔	
5月3日		許志華	戴淑賢	戴淑賢		5月5日			黃冠鈞			黃冠鈞	
5月10日	徐昕煒	許志華	饒忻	饒忻		5月12日		余燕薇		王珮嘉	余燕薇		
5月17日	徐昕煒	許志華	戴淑賢	戴淑賢		5月19日							
5月24日		許志華	饒忻	饒忻		5月26日				王珮嘉			
5月31日	徐昕煒	許志華				6月2日							
6月7日						6月9日							
6月14日					期末考週・展演週	6月16日							期末考週・展演週

王珮嘉老師

Case study: Ergonomics

個案研究:人因工程

- 1. Core Ability Direction
 - Problem finding & Problem solving.
 - Develop an effective presentation narrative.
- 2. Prerequisite: Motion and Time Study, Ergonomics
- 3. Course Design: 12 hours

No.	Hour	Teaching approach	Content				
1	2	Lecture	Industrial ergonomics case studies				
2	4	Field study	Case-1: Industry visit & ergonomic assessment				
3	3	Group meeting	Case-1: Initiate & intergrate an ergonomic report				
4	4	Field study	Case-2: Industry visit & ergonomic assessment				
5	3	Group meeting	Case-2: Initiate & intergrate an ergonomic report				
6	2	Presentation	Final presentation				

ENSURE ACCESS TO AFFORDABLE, RELIABLE, SUSTAINABLE AND MODERN ENERGY FOR ALL

Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development

Household Energy Management

- Research Questions:
 - 1. Where a household uses its energy?
 - 2. What is an energy efficient home?
 - 3. What are the ways to motivate Taiwanese to save energy?
- Research Method:
 - Questionnaire
 - 2. Survey

Case Study (Service Quality)

- Overbooking of United Airlines-
- Service Failure that Impairs Corporate Image

Teaching Plan and Class Discussion:

- 1. Why Overbooking? What the benefit and loss for airline and customers.
- 2. Service quality perceived by customers.
- 4. Service failure and recovery.
- 5. Crisis management.
- 6. Profit vs. customer satisfy.

Innovative Design – by Hsin Rau

Week 1: What Is TRIZ?

- Key Discoveries
- Hierarchical View
- Seven Pillars
- Success Stories
- Global Innovation Index
- Applications & Organizations
- Week 2: TRIZ and Systematic Innovation Tools (1)
 - Six Thinking Hats with Practice
 - Psychological Inertia
 - STC Operator
- Week 3: TRIZ and Systematic Innovation Tools (2)
 - Ideality
 - Ideal Final Result
 - 9 Windows Method with Practice
 - S-curve

Innovative Design – by Hsin Rau

- Week 4: TRIZ Solution Procedure (1)
 - Problem Definition
 - Function Analysis
 - Cause Effect Chain and Contradiction Analysis
- Week 5: TRIZ Solution Procedure (2)
 - 40 Inventive Principles
 - Contradiction Matrix
 - Design Evaluation
- Week 6: Final Project
 - Project Proposal
 - Project Presentation

Altshuller's **Contradiction Matrix** Worsening Parameters **Improving Parameters** 29,17 Weight of moving object 38,34 Weight of stationery object Inventive 8,15 Length of moving **Principles** object 29,34 Length of stationery 35.28 40,29 10,70 39 **Parameters** 2,17 Area of moving object +

6

決策與柔性計算 Decision and Soft Computing

Dr. Hsin-Wei Hsu Assistant Professor

Department of Industrial and Systems Engineering Chung Yuan Christian University

2021

決策不是硬梆梆, 「計算」也可以很溫柔?

方案確定 方案不確定 (certain alternatives) (uncertain alternative) 單一任務 作業研究 決 主觀判斷 (single task) (OR) 策 多屬性/多目標決策 型 柔性計算 多重任務 (Multi-criteria 態 (multiple tasks) (Soft Computing) **Decision Making**) **→** w **→** External environment Stakeholder **Functional** Approximation/ **Approximate** Reasoning Randomized Feasible decision region Search Feasible alternatives Multivalued & **Fuzzy Logics** Resources money, time, regulation, ..

徐昕煒老師

決策與柔性方法: 四個方法,解決四個問題

案例應用: 我們與永續的距離是...

「你的決策」

British scholar Samuel Eilon,

俗話說(其實是英國學者說)

『最佳化是終極的科學; 然而,尋找足夠滿意的 答案是一門藝術』

"Optimizing is the science of the ultimate; satisficing is the art of the feasible."

中原大學,全人教育!讓我們一起來學習科學中的藝術!

Curriculum planning

Expected hours: 12 hours (dynamic adjustment)

Requirement: Basic programming ability or willing to self-learn

(Warning: A rapid development of ability without the basic theory in depth)

Multi-attri	bute Decision Making (AHP)	Decision under Uncertainty (Fuzzy)		
1st hour	Introduction to Multiple Attribute Decision Making	1st hour	The type of uncertainty and introduction of Fuzzy.	
2 nd hour	What's AHP?	2 nd hour	Fuzzy theory	
3 rd hour	The case and application	3 rd hour	Fuzzy programming	
Assignment	Coding for the AHP method	Assignment	CPLEX or LINGO solver	

Multi-obje	ctives Decision Making (CP)		Algorithms (GA)
1st hour	Introduction to MODM	1st hour	Introduction to Algorithm
2 nd hour	The nondominated solution	2 nd hour	What is the Generic Algorithm
and 1	How to define a "good"	2 11001	used for?
3 rd hour	decision?	3 rd hour	The case and application
Assignment	CPLEX or LINGO solver	Assignment	Coding for the GA

Project and Scoring

Things beyond 12 hours

- 1. Self-learning the coding and software using ability
- 2. Paper or case reading and writing experience report
- 3. Reproduce the achievements of others or plan a special project by yourself, and complete the project.

Scoring					
Four Assignments	 Coding for AHP CP homework FP homework Coding for GA 	40%			
Experience Report	xperience Report 1 international paper or case study				
Project	 Reproduce the achievements of others (low level) Your own project (High level) 	50%			

Manufacturing/AI: CPS introduction

- Phase 1: Virtual system development
 - Platform : Automation Studio
 - 1. Introduction of technologies applied to manufacturing systems
 - 2. Process control introduction
 - a) Actuators
 - b) Electric control system (JIC and IEC standards)
 - c) PLC and Ladder diagrams
 - d) Sequential Function Charts (SFC)
 - e) 3D virtual system development (Case study and existing equipment)

Note: Please refer to the figures (1) CPS development Plan and (2) CPS development details

Manufacturing/AI: CPS introduction

- Phase 2: CPS development
 - Platform : Automation Studio
 - 1. Introduction of physical control units
 - a) Mitsubishi
 - b) Omron
 - 2. Introduction of communication strategies
 - a) OPC severs
 - b) OPC DA/UA
 - c) Communications

Note: Please refer to the figures (1) CPS development Plan and (2) CPS development details

Business Analytics (商業分析)

- (MIT) apply the tools of modern data science, optimization, and machine learning to solve real-world business problems
- Machine learning: A branch of Al
- Prerequisite: Any programming language, knowledge of basic probability and matrix notation (in high school)
- Quality: Willing to learn and code (in Python)
- YouTube: 許志華 最佳化和機器學習1.2.2 Data to analytics to Al

M.Y. Sir, et al., Optimization of Multidisciplinary Staffing Improves Patient Experiences at the Mayo Clinic, *Interfaces*, 2017, 47(5), pp. 425–441

Course deign: 12 hours

- Topic: We will discuss. In service, manufacturing, and anything.
- Listen to my video before the class: Python, machine learning, operations research
- We will discuss your progress during the meeting: Learning by doing

Wiki: Cross Industry Standard Process for Data Mining

趙怡翔老師

AI Technology for Smart Healthcare: Biomedical Image Segmentation using CNN (1/2)

End-to-end image segmentation

Course Objectives

- To learn the SOTA medical image segmentation method: Unet
 - » This method won the 2015 IEEE International Symposium on Biomedical Imaging (ISBI) challenge
 - ✓ Only 30 cell images in the training dataset

AI Technology for Smart Healthcare: Biomedical Image Segmentation using CNN (2/2)

Course Outline

- What is Image Segmentation?
- Fundamentals of Convolutional Neural Network (CNN)
- The biomedical image segmentation method : Unet
- The implementation of Unet using Pytorch or Keras
 - » Train a Unet model using the cell image training dataset
 - » Inference the cell image testing dataset using your Unet model

You can apply Unet in other applications

- Lesion Detection
- Cell Tracking

